Package: MAnorm2 1.2.2
MAnorm2: Tools for Normalizing and Comparing ChIP-seq Samples
Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is the premier technology for profiling genome-wide localization of chromatin-binding proteins, including transcription factors and histones with various modifications. This package provides a robust method for normalizing ChIP-seq signals across individual samples or groups of samples. It also designs a self-contained system of statistical models for calling differential ChIP-seq signals between two or more biological conditions as well as for calling hypervariable ChIP-seq signals across samples. Refer to Tu et al. (2021) <doi:10.1101/gr.262675.120> and Chen et al. (2022) <doi:10.1186/s13059-022-02627-9> for associated statistical details.
Authors:
MAnorm2_1.2.2.tar.gz
MAnorm2_1.2.2.zip(r-4.5)MAnorm2_1.2.2.zip(r-4.4)MAnorm2_1.2.2.zip(r-4.3)
MAnorm2_1.2.2.tgz(r-4.4-any)MAnorm2_1.2.2.tgz(r-4.3-any)
MAnorm2_1.2.2.tar.gz(r-4.5-noble)MAnorm2_1.2.2.tar.gz(r-4.4-noble)
MAnorm2_1.2.2.tgz(r-4.4-emscripten)MAnorm2_1.2.2.tgz(r-4.3-emscripten)
MAnorm2.pdf |MAnorm2.html✨
MAnorm2/json (API)
NEWS
# Install 'MAnorm2' in R: |
install.packages('MAnorm2', repos = c('https://tushiqi.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/tushiqi/manorm2/issues
- H3K27Ac - ChIP-seq Samples for H3K27Ac in Human Lymphoblastoid Cell Lines
chip-seqdifferential-analysisempirical-bayeswinsorize-values
Last updated 2 years agofrom:5fd6bdb1a1. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 23 2024 |
R-4.5-win | OK | Nov 23 2024 |
R-4.5-linux | OK | Nov 23 2024 |
R-4.4-win | OK | Nov 23 2024 |
R-4.4-mac | OK | Nov 23 2024 |
R-4.3-win | OK | Nov 23 2024 |
R-4.3-mac | OK | Nov 23 2024 |
Exports:aovBioCondbioCondcmbBioConddiffTestdiffTest.bioConddistBioCondestimatePriorDfestimatePriorDfRobustestimateSizeFactorsestimateVarRatioestParamHyperChIPextendMeanVarCurvefitMeanVarCurveinv.trigammaisSymPosDefMAplotMAplot.bioCondMAplot.defaultMAplot.diffBioCondmean_var_logwinfnormalizenormalizeBySizeFactorsnormBioCondnormBioCondBySizeFactorsplot.aovBioCondplot.matrixplot.varTestBioCondplotMeanVarCurveplotMVCprint.bioCondprint.summaryBioCondsetMeanVarCurvesetPriorDfsetPriorDfRobustsetPriorDfVarRatiosetWeightsummary.bioCondutil.trigammavarRatiovarTestBioCondvstBioCond
Dependencies:clicolorspacefarvergluelabelinglatticelifecyclelocfitmunsellR6RColorBrewerrlangscalesstatmodviridisLite